

MODULE DESCRIPTION (ANALYTICAL PROGRAM).

1. Module Information Code:	
Name of the Institution and School	Universidad Autónoma de Nuevo León, School of Medicine
Name of the Learning Unit	Biochemistry and Molecular Biology
 Total classroom hours for theory and/or practice. 	129 hours
Total extra classroom hours	141 hours
Course Modality	Schooled
 Type of academic period in which the module is offered 	1st semester
Type of Learning Unit in the Curriculum	Compulsory
Curriculum area:	ACFB Basic
UANL credit points	9
Date of module creation:	September 14, 2014.
Date of last amendment:	March 19, 2020.
 Person(s) responsible for the module design and amendments: 	Dra. C Ana María Rivas Estilla.

2. Introduction

This learning unit is divided in 3 stages or phases which address the following topics: on the first phase, students acknowledge the importance Biochemistry has for the fundaments of the human body's and cell's composition and chemical functioning. Students reinforce organic chemistry concepts which help them to understand macromolecules' structure and functioning, as well as the features water molecules have which let them function as the main solvent in the organism. In addition, students analyze the vitamins' metabolic function and the diseases which are related to a lack or excess of the vitamins' concentration. Also, they analyze proteins', carbohydrates' and lipids' chemical composition, their different organization levels, as well as the functions they have as structural, transport or oxygen or energy storage biomolecules, catalytic activity, and the changes which appear when there are defects in their synthesis or degradation to detect the alterations which explain the metabolic origin some diseases have.

On the second phase, students analyze the integration of carbohydrates, lipids, and nitrogenous compounds metabolism, explaining

their usage for the functioning of the liver, muscles, adipose tissue, and brain, and the metabolic adaptations these organs make in order to work in the postprandial state, and during a extended fast, taking these organs as a model for understanding the organism's functioning thoroughly.

On the third phase, students analyze Molecular Biology's tenets in the genetic information flow: DNA, from its structure to the important processes such as replication and repairing; RNA structure and transcription, translation, mechanisms and important components of this process, as well as the regulating mechanisms which control the gene expression. There is also a general revision on the applications for different molecular methods used for disease molecular diagnostic and for the biotechnology field.

3. Purpose(s)

This learning unit, through the study of Biochemistry and Molecular Biology, the student analyzes the importance of biochemistry for medicine, the structure and function of the main organism components: amino acids, carbohydrates, lipids, nucleotides, vitamins, and hormones. The will also analyze the metabolic processes from such compounds which make possible for the living organism fulfill its functions in order to have a better understanding of the way biochemical alterations provoke different pathologies.

In the molecular biology phase, students analyze DNA, RNA, and proteins as well as the interactions that occur among them during the cell's or organism's growth and differentiation processes. Additionally, we also establish an organism's general homeostasis molecular basis in order to analize the causes an inherited or acquired disease has, as well as the basis for different techniques which are used in the molecular diagnostic.

This learning unit allows setting the fundaments for the medical practice, and provides the basis for a later study of physiology, genetics, pharmacology and toxicology, microbiology, clinical pathology and Medical Sciences I and II. It contributes to the Medical Surgeon and Obstetrician's graduate profile by providing the basis of knowledge needed for maintenance of the body homeostasis, and understand thoroughly the interrelationship between health and disease.

4. Competences of the graduate profile

a. General competences contributing to this learning unit.

Instrumental skills:

1. Apply autonomous learning strategies in the different levels and fields of knowledge that allow them make appropriate and relevant decisions in the personal, academic and professional fields.

2. Use the logical, formal, mathematical, iconic, verbal and non-verbal languages according to their stage of life, in order to understand, interpret and express ideas, feelings, theories and streams of thinking with an ecumenical focus.

3. Use the information and communication technologies as access tools to information and its transformation in knowledge, as well as for learning and collaborative work with cutting-edge techniques that allow its constructive participation in society.

4. Dominate their native language in oral and written form with correctness, relevancy, opportunity and ethics adapting its message to the situation or context, in order to transmit of ideas and scientific findings.

5. Employ logical, critical, creative and proactive thinking to analyze natural and social phenomena that let them make relevant decisions in its area of influence with social responsibility.

Personal and social interaction skills

9. Maintain an attitude of commitment and respect towards the diversity of social and cultural practices that reaffirm the principle of integration in the local, national and international context with the purpose of promoting environments of peaceful coexistence.

10. Intervene in front of the challenges of contemporary society at the local and global level with a critical attitude and human, academic and professional commitment to help consolidate the general wellness and sustainable development.

11. Practice the values promoted by the UANL: truth, equality, honesty, liberty, solidarity, respect for life and anyone's, peace, respect for nature, integrity, ethics behavior and justice, within their personal and professional environment in order to make a sustainable society.

Integrative skills

12. Make innovative proposals based on the holistic understanding of reality to help overcome the challenges of the interdependent global environment.

13. Take the lead according to social and professional needs to promote relevant social change.

14. Resolve personal and social conflicts in accordance with specific techniques in the academic field and their profession for the proper decision making.

15. Achieve the adaptability required in uncertain professional and social environments of our time to improve living conditions.

b. Specific competences of the graduate profile that contributes to the learning unit

Scientific Base of Medicine

1.- To use the scientific foundations of medicine by considering the economical, psychological, social, cultural and environmental factors which contribute to the development and evolution of diseases in order to make decisions and take medical actions.

Professional Clinical Practice

2.- To solve clinical problems through deductive reasoning, interpretation of findings and the definition of their nature in order to make decisions and determine principles of actions of the medical practice to be followed in a responsible way, impacting individual and collective health.

Critical thinking and research

7.- To apply the scientific method in the resolution of medical problems with an innovative, analytical and self-critical attitude toward the prevention, diagnosis and treatment of diseases.

Communication

11.- To apply the principles of effective communication by establishing a respectful and empathetic relationship with the patient, relatives, the community and other health professionals in order to use the information properly.

5. Course roadmap:

Recognizes comprehensively the organism's main biochemical components Describe the basis for the functioning of the biochemical components in the metabolic processes. Analyze the metabolic reactions in a healthy human body and relate it to the diseases caused by the alterations.

Analyze the genetical information flow understanding the replication, transcription, translation, and genetical regulation phases.

Apply the concepts about metabolism in the states of feeding and fasting.

Analyze the origin of metabolic fuels.

Understands the molecular basis that provoke genetical changes and are responsible of diseases. Identifies the molecular techniques for its diagnostic and treatment. Course Integrative Product (PIA):

The student makes a presentation on a metabolic condition or a disease using multimedia resources and written papaers.

6. Structuring into stages or phases

Phase 1: Biomolecules.

Component(s) of the competence:

Analyze the basis of biochemistry recognizing the main biomolecules, their components and functional groups, the different types of links, as well as the properties of a water molecule and vitamins, in order to describe las basis of its functions in the metabolic processes.

Analyze principles of Bioenergy, chemical composition of the main biomolecules, its structures, functions and metabolic reactions in a healthy human body, in order to understand the diseases provoked by alterations in them.

Evidence of student learning	Performance Criteria	Learning activities	Contents	Resources
Evidence 1: Concept map about vitamins and a questionnaire about their relationship with diseases caused by a lack or excess of them.	Classifies vitamins according to their solubility. Relates comprehensively the vitamins' functions with the metabolic processes. Includes diseases caused by a lack or excess of vitamins.	Knowledge-Acquisition Activities: Professor's lecture The professor guides the students to identify the importance of Biochemistry and the main characteristics of molecular bonds. The professor also solves doubts on the human body biochemical composition and how it relates to its properties.	Conceptual Content: The foundations of Biochemistry and its importance in medicine. Main biomolecules: proteins, carbohydrates, lipids and nucleic acids, Water as a solvent: molecular	Classrooms from the School of Medicine. Biochemistry and Molecular Medicine Laboratories. Text books. Reference books. Handbook for laboratory practices. Internet.
Evidence 2: Resolución de un caso clínico relacionado con proteínas especializadas: Hemoglobina	Relates the structures and functions of globular hemoproteins. Includes hemoglobinopathies caused by alterations in the hemoglobin structure or synthesis.	Promotes group discussions for integrating the knowledge acquired. Provides, if necessary, more readings for students to be able to review the concepts from the topic. The professor guides the students to identify the main characteristics biomolecules have and their metabolism. In a group session with the	structure, hydrogen bonds in water Shock absorbers: characteristics, physiological importance Types of links: non-covalent and covalent Vitamins: Classification and functions in the metabolism	Computer. Projector. Speakers. Power point Slides for presentations. Videos. Whiteboard. Markers.

professor, students review	Chemical composition of the
concepts and solve questions.	main biomolecules, their
Professor presents a series of	structures, functions and
clinical cases for these to be	metabolism
solved in groups.	
Promotes the discussion on the	Structure and function of
importance of metabolic routes	proteins:
to obtain energy.	
to obtain energy.	Structure and classification of
	amino acids according to their
Learning Activities	nature.
The students read the passages	Structure and function of
suggested by the professor and	proteins, levels of organization
from the analytical program.	Globular (myoglobin and
Discuss in teams an assignment	hemoglobin) and fibrous
on the new terms' meanings	(collagen and elastin) proteins
learned and solve questions with	(conagen and elastin) proteins
the teacher's help.	Function, kinetics and
	properties of enzymes.
Elaborate a list with the definitions from the concepts	
reviewed.	Intermediate metabolism:
Teviewed.	Bioenergetics, Gibbs free
Relate metabolic processes with	energy, delta G (+) and (-),
health and disease through	ATP synthesis. Respiratory
group discussions.	chain, oxidative
	phosphorylation, Mitchell's
Analyze during the lecture how the water molecule's form	chemosmotic hypothesis,
affects the properties of this	decouplers and inhibitors of
liquid which allows it to function	the respiratory chain.
as the main organism's fluid.	
	Introduction to carbohydrates:
Describe relevant aspects	classification, structure,
biochemistry has for medicine.	function Digestion of dietary
Clossify the types of chamical	carbohydrates
Classify the types of chemical bonds in molecules, explaining	
the properties each of them	Routes of carbohydrate

First Partial Exam . Evidence 3: Clinical case analysis related to carbohydrates metabolism: Diabetes.	Explains the main pathways for carbohydrates metabolism and their regulation. Relates the alterations in carbohydrates metabolism with some metabolic diseases.	have. Explain the alterations in the Hydric balance and the consequences in the metabolism. Define the terms isotonic, hypertonic and hypotonic. Read a text about vitamins. Analize the concepts of water- soluble and fat-soluble vitamins. Research the diseases provoked by a vitamin lack or toxicity Attend the lab session according to the Schedule programmed. Answer the laboratory practices individually or in team. Analyze and repeat the results obtained, solve problems to apply the knowledge learned, elaborate and hand in a written report following the instructions provided by the professor. Makes a deep reading from the literature recommended by the professor. Research in the book references about proteins, their biochemical composition, their classificaton according to their tridimensional shape and either they work as a subunit or several subunits.	metabolism: Glycolysis. Cycle of tricarboxylic acids. Gluconeogenesis. Glycogen metabolism Metabolism of monosaccharides and disaccharides Pathway of pentose phosphate and NADPH. Glycosaminoglycans. Proteoglycans and glycoproteins. Basis of metabolic diseases related to carbohydrates. Lipid metabolism: Metabolism of dietary lipids. Metabolism of fatty acids and triacylglycerols. Metabolism of complex lipids. Metabolism of cholesterol and steroids. Amino acids: elimination of	
--	--	---	---	--

			nitrogon	
Second Partial Exam		Discuss the structural and catalytic functions enzymes have and describe the functions that different types of these have.	nitrogen. Function of aminotransferases, glutamine synthetase and glutaminase.	
Evidence 4: Clinical case analysis on Colesterol and lipo proteins metabolism.	Describes cholesterol metabolism, and plasma lipoporteins origin and function.	Make a scheme about the electron transport chain representing its compounds, and the spots for transporting electrons, as well as the electrochemical potential development. Students point at the spots which get blocked by the oxidative phosphorylation decouplers.	Urea cycle: reactions, global stoichiometry and its regulation. Ammonia metabolism: sources, transport in the circulation, main causes of hyperammonemia.	
	runction. Relates defects in cholesterol and lipoproteins metabolism with the risk of cardiovascular diseases.	From the text, the student obtains the definitions for metabolism, anabolism, catabolism, intermediate metabolism, metabolic pathway, reactants, products, and the limiting reaction. Defines carbohydrate and what its functions are in the organism. Analyzes the structure, classification and function of the main sugars in the diet. Describes the carbohydrates digestive process. Describes the main metabolic carbohydrates pathways, explaining for each of them the following components: a) substrate, b) regulatory enzyme c) organelle in which it is carried out	Degradation and synthesis of amino acids: Classification of amino acids: essential, non-essential, glycogenic and/or ketogenic Catabolism of the carbon skeletons of the amino acids. Biosynthesis of non-essential amino acids. Abnormalities in the metabolism of amino acids. Conversion of amino acids into specialized products: porphyrins, catecholamines, neurotransmitters, histamine, creatine and melanin.	

	r	
d) product(s)		
e) inhibitors or activators		
f) the diseases described		
Relates diseases provoked by	Procedural Content	
defects in the carbohydrates		
metabolic pathways.	- Understanding and	
	correlation of concepts.	
Defines lipid and classifies	Application and evolvais of	
different types of lipid molecules	 Application and analysis of laboratory procedures: 	
found in the organism.	Determination of total proteins	
Describes the lipids digestion	in serum using the Biuret	
and absorption processes in the	method.	
diet. In team work, elaborates a	Determination of lactate	
a chart with the names of the	dehydrogenase activity and its	
main types of lipids, their	importance in clinical	
molecular structure, their	diagnosis. Identification of biologically	
properties in the organism and	important sugars through	
functions in it. Defines what	specific chemical reactions for	
lipids, fatty acids and	monosaccharides, reducing	
triacylglycerols are and what	sugars, ketoazucars, pentoses	
functions they have in the	and polysaccharides.	
organism, as well as the	Determination of blood	
alterations presented when they	glucose by the glucose	
are not consumed in adequate	oxidase method. Determination of blood	
conditions. Describes each of	cholesterol by means of an	
the pathways for lipids synthesis	enzymatic method.	
and degradation mentioned in		
the chart done in the previous	Laboratory practices:	
activity. Describes cholesterol,	Measures to work safely in the	
lipoproteins, and steroid	laboratory:	
hormones metabolism. Identifies	General basic recommendations, individual	
the importance of	protection, collective protection	
prostaglandinas, trombxanos y	and classification of potential	
leucotrienos synthesis.	risk agents in the laboratory.	
Classifies essential and non-	Determination of pH in	
essential amino acids, pointing	different solutions: using the	
	colorimetric and potentiometric	

out if they are glycogenic or ketogenic. Describes the importance of aminotransferases and glutamine synthetase to eliminate the amino group from amino acids. Analyze the importance of the urea cycle for nitrogen excretion in the human being and the diseases that appear when there are changes in the functioning of this pathway.	method. Buffer solutions: Check the buffer capacity of a phosphate buffer with a concentration of 0.01M and 0.1M by adding acids and bases Attitudinal Content - Willingness to learn and work in teams - Respect for the professor and classmates	
Schematize the urea cycle Outlines the urea cycle, highlighting the precursors, the enzyme that regulates the pathway and the diseases related to the altered function of any of the enzymes involved in it Describes the causes of hyperammonemia and the reason for it to be considered a medical emergency.		
Analyzes the catabolism which occurs in carbonated skeletons which result from the deamination of amino acids and identifies the glucogenic amino acids, the ketogenic amino acids, and those which are both at the same time.		

It relates amino acids as	
precursors of the synthesis of	
porphyrins, catecholamines,	
serotonin, neurotransmitters,	
purines and pyrimidines.	
Attends the laboratory session	
according to the appointment	
scheduled.	
O anna la ta a in dividu a llucar in	
Completes individually or in	
team the laboratory practices.	
Completes homeworks,	
evaluations and the	
corresponding written reports	
following the instructions	
provided by the professor.	
Line do in the second function in	
Hands in the reports (written in the practices manual) according	
to the due line agreed for this.	

Phase 2: Integración del metabolismo

Component(s) of the competence:

Applies the concepts of metabolism in the states of feeding and fast in order to understand the mechanisms that regulate the interactions among different organs.

Evidence of student learning	Performance Criteria	Learning activities	Contents	Resources
Evidence 5: Analysis of a clinical situation related to the cycle feeding- fast	Explains the main metabolic pathways in the liver, adipose tissue, skeletal muscle, and the brain in either the absorption and fast mode. Describes the relationships among tissues during the feeding and fast cycle, as well as hormonal signs which favor them.	 Knowledge-Acquisition activities. The professor helps the students to integrate the knowledge acquired in the exercises for building metabolic maps. The professor provides the students a set of clinical cases for them to be related to metabolic conditions, and in group work, they diagnose a possible cause for the disease. Learning activities. Read the bibliography required by the professor. Compares the active pathways for each organ in the postprandial and fast states, and points out the relationship insulin-glucagon. Describes the importance of adaptations made in the process of 	 <u>Conceptual Content:</u> Postprandial state, fasting, hormones that regulate the use of metabolic fuels. Metabolism of the brain, liver, skeletal muscle and adipose tissue <u>Procedural Content</u> Understanding and correlation of concepts. Urine general analysis: physical and chemical properties evaluation. <u>Attitudinal Content</u> Willingness to learn and work in teams Respect for the professor and classmates 	Classrooms from the School of Medicine. Biochemistry and Molecular Medicine Laboratories. Text books. Reference books. Handbook for laboratory practices. Internet. Computer. Projector. Speakers. Power point Slides for presentations. Videos. Whiteboard. Markers.

· · · · · · · · · · · · · · · · · · ·		1
	change from feeding state to	
	fast.	
	In a group activity, student	
	analysis specific pathways on	
	each metabolic condition,	
	discussing the importance they	
	have for the organism's survival.	
	Attends the laboratory session	
	according to the appointment	
	scheduled.	
	Completes individually or in	
	team the laboratory practices.	
	Completes homeworks,	
	evaluations and the	
	corresponding written reports	
	following the instructions	
	provided by the professor.	
	provided by the protocoort	
	Hands in the reports (written in	
	the practices manual) according	
	to the due line agreed for this.	
Third partial exam.		
····· • • •		

Phase 3: Molecular Biology

Component(s) of the competence:

Analyze nucleotides, DNA, and RNA structure and function, describing the genetic code's functions and its translation into the protein synthesis, as well as the control mechanisms of the gene expression in order to understand the diseases caused by genetic disorders and identify the molecular techniques for their diagnostic and treatment.

Evidence of student learning	Performance Criteria	Learning activities	Contents	Resources
		Knowledge-acquisition activities:	Conceptual content:	Classrooms from the School of Medicine.
Evidence 6: Clinical case resolution related to the transcription and translation processes.	Describes the principles of genetic transcription and translation. Explains different consequences of the alterations in the nucleotides sequence in the RNA.	Assign the topics to be presented by each team. Alternated oral questions session. Promotes group discussions. Leads these group discussions. Exposition with presentations and videos. Explains and shows laboratory procedures. Provides the bibliography needed for the course.	Nucleotide metabolism: Nucleotide structure Synthesis of purine nucleotides Synthesis of deoxyribonucleotides Degradation of purine nucleotides Synthesis and degradation of pyrimidines. DNA structure, replication and repair Structure of DNA. Stages in the synthesis of DNA from prokaryotes	Biochemistry and Molecular Medicine Laboratories. Text books. Reference books. Handbook for laboratory practices. Internet. Computer. Projector. Speakers. Power point Slides for presentations.
		Verifies that students hand in the written report on time. Checks up the results handed in.	Eukaryotic DNA replication Organization of eukaryotic DNA. DNA repair	Videos. Whiteboard. Markers.
		Learning Activities: Information search, elaboration of the written report, and team	RNA structure, synthesis and processing RNA structure. Transcription of prokaryotic genes.	

· · · · · · · · · · · · · · · · · · ·		
	organization.	Eukaryotic gene transcription.
		Post-transcriptional
	Consult other information	modification of RNA
	sources.	
		Protein synthesis.
	Makes schemes.	The genetic code.
	Discuss their relate of view	Necessary components for
	Discuss their points of view	translation.
	inside the team.	Recognition of codons by
	Discussion and resolution of the	tRNAs
		Stages in protein synthesis
	problems presented in the case.	Cotranslational and post-
	Concepts and processes	translational modification of
	analysis through discussions in	polypeptide chains
	teams and plenary sessions.	
	teams and plenary sessions.	Regulation of gene
	Class expositions by teams.	expression.
		Sequences and regulatory
	The student completes	molecules.
	laboratory practices individually	Regulation of gene expression
	or in teams.	in prokaryotes
		Regulation of gene expression
	Attends the laboratory session	in eukaryotes
	according to the appointment	Biotechnology and human
	scheduled.	disease.
		Restriction endonucleases.
	Applies procedures for	DNA cloning.
	laboratory practices.	Probes.
		Southern transfer.
	Completes homeworks,	Length polymorphism of
	evaluations and the	restriction fragments.
	corresponding written reports	Polymerase chain reaction.
	following the instructions	Analysis of gene expression.
	provided by the professor.	Gene therapy.
		Transgenic animals.
	Hands in the reports (written in	
	the practices manual) according	

	to the due line agreed for this. Analysis and interpretation of results obtained in the laboratory. Problem solving.	 Procedural Content Understanding and correlation of concepts. Application and analysis of laboratory procedures. Laboratory practices. DNA extraction and analysis. Electrophoresis for DNA PCR for the amplification of a region of the beta globin gene Electrophoresis for PCR. Medical bioinformatics. Attitudinal Content • Willingness to learn and work in teams Respect for the professor and classmates 	
Fourth partial exam			

7. Summative Evaluation:

Learning Evidence 1: Activity related to Amino acids	2%
Learning Evidence 2: Clinical case related to specialized proteins: Hemoglobin	2%
Learning Evidence 3: Clinical case analysis related to carbohydrates metabolism: Diabetes	3%
Learning Evidence 4: Clinical case analysis related to cholesterol and lipoproteins' metabolism	3%
Learning Evidence 5: Clinical case analysis related to the cycle feeding and fasting	3%
Learning Evidence 6: Clinical case resolution related to the transcription and translation processes	3%
Laboratory	12%
First Partial Exam	12%
Second Partial Exam	12%
Third Partial Exam	12%
Fourth Partial Exam	12%
Final Evaluation	14%
Course Integrative Product (CIP)	10%
Total	100%

8. Course Integrative Product.

Bibliographic research with its corresponding written report as well as a multimedia presentation. These will be evaluated by professors from the department with specific evaluation instruments.

The students research a topic which involves a metabolic situation which appears in situations such as pregnancy, exercising, or any other disease in which the metabolic alterations in the organism can be described.

The requirements are that students develop their research consulting several resources of information and attend two follow-up sessions with the professor to clarify doubts.

9. References

Ferrier, D. R. (2018). *Bioquímica*. Barcelona: Lippincott Williams & Wilkins 7a Edición

McKee, T. & McKee, J. (2014). Bioquímica: las bases moleculares de la vida. México: McGraw-Hill.

Vasudevan D. M., Sreekumaris S, Vaidyanathan K. (2011). Bioquímica. México: Cuellar-Ayala.

Manual de Laboratorio de Bioquímica. (Agosto-Diciembre 2019). Departamento de Bioquímica y Medicina Molecular. Monterrey, México: Facultad de Medicina, UANL.

Electronic resources:

International Federation for clinical chemistry and laboratory medicine: http://www.ifcc.org/

The Journal of biological chemistry/ F1000: <u>http://www.jbc.org/browserellinks</u>

HB Minireview: <u>http://academic.research.microsoft.com</u>

Cab Direct: http://www.jstage.jst.go.jp/browse/bbb/-char/en

APPENDIX.

ASSESSMENT AND WORKLOAD

Module workload		Number of hours	Percentage	
Contact hours	Class-based instruction	70 h (54.26%)		
Contact nours	Clinical case analysis and resolution	6 h (4.65%)	17.00/	
	Laboratory practice	42 h (32.55%)	47.8% = 129 horas	
	Course integrative product (CIP)	3 h (2.32%)		
	Exam taking	8 h (6.20%)		
Independent	Study	100 h (70.92%)	52.2% =	
study	Exam preparation	41 h (29.07%)	- 141 horas	
Total hours of UANL/ECTS*	the workload: 30 hours X 9 credits	270 h		

*European Credit Transfer and Accumulation System 1 UANL credit = 30 hours

NOTE: Rubrics, checklists and evaluation formats are elaborated by using the performance criteria described in each stage of the module.

SUPLEMENTO COVID-19

Siguiendo las recomendaciones de la Secretaría de Salud del país y la Rectoría de la Universidad, ante la coyuntura de salud COVID-19, la organización de la docencia desde marzo del 2020, seguirá un modelo híbrido, donde la docencia se ajustará a los horarios aprobados por la Secretaría de Salud siguiendo un modelo de Presencialidad / No presencialidad en la medida en que las circunstancias sanitarias y la normativa lo permitan. Los estudiantes asistirán a las clases de manera no presencial mediante la transmisión de las mismas de manera síncrona/asíncrona vía "on line".